Preface

Thank you for purchasing the SD95H series AC drive developed by Our company.For the users who use this product for the first time, read the manual carefully.

Contents

Chapter 1 Safety and Cautions 2
Chapter 2 Product Information. 9
Chapter 3 Operation And Display. 16
Chapter 4 Function Parameters Table 19
Chapter 5 Troubleshooting 44
Chapter 6 RS485 Communication Protocol 48

Warranty Agreement

1. The warranty period of the product is 18 months (refer to the bar code on the equipment body). During the warranty period, if the product fails or damaged under the condition of normal use by following the instruction, we will be responsible for free maintenance.
2. Within the warranty period, maintenance will be charged for the damages caused by the following reasons :

The damage caused by improper use or repair/modification without prior permission.

The damage caused by fire, flood, abnormal voltage , other natural disasters and second disaster.

The hardware damage caused by artificial falling or transportation after purchase.

The damage caused by the improper operation.
The damage or failure caused by the trouble out of the equipment (e.g. : External device)
3. If there is any failure or damage to the product, please fill in the information of the Product Warranty Card in details correctly.
4. The maintenance fee is charged according to the newly adjusted Maintenance Price List of our company .
5. In general , the warranty card will not be re-issued. Please keep the card and present it to the maintenance personnel when asking for maintenance .
6. If there is any problem during the service, please contact the agent of our company or our company directly .
7. The company reserves the right to interpret this agreement

Chapter 1 Safety and Cautions

Safety and Cautions Definition

Read this manual carefully so that you have a thorough understanding.
Installation, commissioning or maintenance may be performed in conjunction with this chapter. Our company will assume no ability and responsibility for any injury or loss caused by improper operation.

4) Danger

Indicates that failure to comply with the notice will result in severe personal injury or even death.

Note

Indicates that failure to comply with the notice will result in personal injury or property damage.

1.1 Safety Cautions

Use Stage	Safety Grade	Precautions
		Do not install the equipment if you find water seepage, component missing or damage upon unpacking.
Before Installation Do not install the equipment if the packing list does not conform to the product you received.		
	Danger	Handle the equipment with care during transportation to prevent damage to the equipment. Do not use the equipment if any component is damaged or missing. Failure to comply will result in personal injury. Do not touch the components with your hands. Failure to comply will result in static electricity damage.

$\begin{array}{|l|l|l|}\hline \text { Use Stage } & \text { Safety Grade } & \begin{array}{l}\text { Precautions }\end{array} \\
\hline \text { During } & & \begin{array}{l}\text { Install the equipment on incombustible objects such } \\
\text { as metal, and keep it away from combustible } \\
\text { materials. Failures to comply may result in a fire. }\end{array} \\
\text { Installation } \\$\cline { 2 - 4 } \& \& \(\left.$$
\begin{array}{l}\text { Do not loosen the fixed screws of the components, } \\
\text { especially the screws withe red marks. }\end{array}
$$

Failure it will result in damage to the AC drive.

Install the AC drive in places free of vibration and

direct sunlight.\end{array}\right\}\)| When two AC drives are laid in the same cabinet, |
| :--- |
| arrange the installation positions properly to ensure |
| the cooling effect. |

Use Stage	Safety Grade	Precautions
Before		Please confirm the peripheral equipment and cable converter is configured in this manual of the recommended model, all the configuration line in accordance with the connection method of the manual provides the correct wiring. Failure to comply will result in accidents.
Power-on		

Use Stage	Safety Grade	Precautions
During Maint- enance	Do not repair or maintain the AC drive at power-on. Failure to comply will result in electric shock.	
During Maint- enance	Ensure that the AC drive is disconnected from all power suppliers before staring repair or maintenance on the AC drive.	
Danger	Repair or maintenance of the AC drive may be performed only by qualified personnel. Failure to comply will result in personal injury or damage to the AC drive.	
Set and check the parameters again after the AC drive is replaced.		

1.2 Cautions

1.2.1 Motor Insulation Test

Perform the insulation test when the motor is used for the first time, or when it is reused after being stored for a long time, or in a regular check-up, in order to prevent the poor insulation of motor windings from damaging the AC drive during the insulation test. A 500-V mega-Ohm meter is recommended for the test. The insulation resistance must not be less than $5 \mathrm{M} \Omega$.

1.2.2 Thermal Protection of Motor

If the selected $A C$ drive does not match the rated capacity of the motor, especially when the rated power of the AC drive is higher than that of the motor, adjust the parameters for motor protection in the AC drive or to install thermal relay to protect the motor .

1.2.3 Running Below and Above Rated Frequency

The AC drive provides frequency output of 0 to 600.00 Hz . When the users use the frequency converter for a long time, please pay attention to the motor cooling or use of variable frequency motor. If the AC drive is required to run at over 50 Hz , consider the capacity of the machine.

1.2.4 Motor heat and noise

The output of the AC drive is pulse width modulation (PWM) wave with certain harmonic frequencies, and therefore, the motor temperature, noise, and vibration are slightly greater than those when the AC drive runs at power frequency $(50 \mathrm{~Hz})$.

1.2.5 Voltage-sensitive device or capacitor on output side of the AC drive

 Do not install the capacitor for improving power factor or lightning protection voltage sensitive resistor on the output side of the AC drive because the output of the AC drive is PWM wave. Otherwise, the AC drive may suffer transient overcurrent or even be damaged.
1.2.6 Contactor at the I/O terminal of the AC drive

When a contactor is installed between the input side of the AC drive and the power supply, the AC drive must not be started or stopped by switching the contactor on or off. If the AC drive has to be operated by the contactor, ensure that the time interval between switching is at least one hour since frequent charge and discharge will shorten the service life of the capacitor inside the AC drive.

When a contactor is installed between the output side of the AC drive and the motor, do not turn off the contactor when the AC drive is active. Otherwise, modules inside theAC drive may be damaged.

1.2.7 When External Voltage is Out of Rated Voltage Range

The AC drive must not be used outside the allowable voltage range specified in this manual. Otherwise, the AC drive may be damaged. If required, use a corresponding voltage step-up or step-down device.

1.2.8 The Derating of the AC Drive

Different power grade frequency converter has its default carrier frequency, when to run at a higher carrier.frequency, the AC Drive must to reduce the amount when running.

1.2.9 Prohibition of Three-Phase Input Change into Two-Phase Input

Do not change the three-phase input of the AC drive into two-phase input. Otherwise, a fault will result or the AC drive will be damaged.

1.2.10 Surge Suppressor

The AC drive has a built-in over-voltage, over-current device for suppressing the surge voltage generated when the inductive loads around the AC drive are switched on or off. If the inductive loads generate a very high surge voltage, use a surge suppressor for the inductive load to prolong the service life of the AC drive.

1.2.11 Ambient Temperature and De-rating

The normal use of the frequency converter ambient temperature is $-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$. Temperature exceeds $40^{\circ} \mathrm{C}$, the equipment need to reduce the amount of use. The ambient temperature of each increase is reduced by 1.5%,the maximum use of the ambient temperature is $50^{\circ} \mathrm{C}$.

1.2.12 Altitude and De-rating

In places where the altitude is above 1000 m and the cooling effect reduces due to thin air, it is necessary to de-rate the AC drive. Contact our company for technical support.

1.2.13 Disposal

The electrolytic capacitors, plastic parts and other devices may explode when they are burnt. Poisonous gas is generated when they are burnt. Treat them as ordinary industrial waste according to relevant national laws and regulations.

1.2.14 Adaptable Motor

- The standard adaptable motor is adaptable four-polo squirrel-cage AC asynchronous induction motor or PMSM. For other types of motor, select a proper AC drive according to the rated motor current.
- The cooling fan and rotor shaft of general motor are coaxial, which results in reduced cooling effect when the rotational speed declines. If variable speed is required, add a more powerful fan or replace it with variable-frequency motor in applications where the motor runs at low frequency for a long time.
- The standard parameters of the adaptable motor have been configured inside the AC drive. It is still necessary to perform motor auto-tuning or modify the default values based on actual conditions. Otherwise, the running effect and protection performance will be affected.
- The AC drive may alarm or even be damaged when short-circuit exists on cables or inside the motor. Therefore, perform insulation short-circuit test when the motor and cables are newly installed or during routine maintenance. During the test, make sure that the AC drive is disconnected from the tested parts.

Chapter 2 Product Information

2.1 Naming Rules

Model code contains product information. Users can find the code on the model designation label attached to the AC drive or the simple nameplate.

Name	Mark	Description	Detail
AC drive series	$\mathbf{1}$	SD95H series	Sinodrive95H abbreviates Sd95H
Voltage level	$\mathbf{2}$	Voltage level	2S: Single-phase 220V Range:-15\%~20\% 4T: Three-phase 380V Range:-15\%~20\%
Adaptable power	$\mathbf{3}$	Adaptable motor power(KW)	0.7KW~55.0KW
Load type	4	Load type	G: General type
Braking unit mark	5	Braking unit	Null: None C: With a brake unit

Fig. 2-1 Name Designation Rules

2.2 Nameplate

$$
\begin{aligned}
& \text { SINOVO } \\
& C \in \mathbb{A} \\
& \text { MODEL: SD95H-4T-5.5G } \\
& \text { INPUT: AC3PH 380V } 50 / 60 \mathrm{~Hz} 14.6 \mathrm{~A} \\
& \text { OUTPUT: AC3PH 380V } 0 \sim 2000 \mathrm{~Hz} 13.0 \mathrm{~A} \\
& \text { S/N: FDLAGCA0A040 } \\
& \text { SHENZHEN SINOVO ELECTRIC TECHNOLOGIES CO.,LTD. } \\
& \text { MADE IN CHINA }
\end{aligned}
$$

Fig. 2-2 Product nameplate

2.3 SD95H Series AC Drive

Model	Power Capacity (KVA)	Input Current (A)	Output Current (A)	Adaptable Motor (KW)
Single-phase 220V Range:-15\%~20\%				
SD95H-2S-0.7G	1.5	8.2	4.7	0.75
SD95H-2S-1.5G	3.0	14.0	7.5	1.5
SD95H-2S-2.2G	4.0	23.0	10.0	2.2
Three-phase 220V Range:-15\%~20\%				
SD95H-2T-0.7G	1.5	5.5	4.7	0.75
SD95H-2T-1.5G	3.0	7.7	7.5	1.5
SD95H-2T-2.2G	4.0	12.0	10.0	2.2
Three-phase 380V Range:-15\%~20\%				
SD95H-4T-0.7G	1.5	3.4	2.3	0.75
SD95H-4T-1.5G	3.0	5.0	3.7	1.5
SD95H-4T-2.2G	4.0	5.8	5.1	2.2
SD95H-4T-4.0G	5.9	10.5	8.5	4.0
SD95H-4T-5.5G	8.9	14.6	13	5.5
SD95H-4T-7.5G	11	20.5	17	7.5
SD95H-4T-11G	17	26.0	25	11
SD95H-4T-15G	21	35.0	32	15
SD95H-4T-18.5G	24	38.5	37	18.5
SD95H-4T-22G	30	46.5	45	22
SD95H-4T-30G	40	62.5	60	30
SD95H-4T-37G	57	76.0	75	37
SD95H-4T-45G	69	92.0	91	45
SD95H-4T-55G	85	113	112	55

2.5 Product Outline, Installation Hole Size

AC drive model	H1(mm)	W1 (mm)	Diameter (mm)	H(mm)	W(mm)	$\mathrm{D}(\mathrm{mm})$	GW(kg)
SD95H-4T-0.7G	178	98	$\varnothing 5$	190	110	150	2.4
SD95H-4T-1.5G							
SD95H-4T-2.2G							
SD95H-4T-4.0G	198	118	$\varnothing 5$	210	130	160	3.5
SD95H-4T-5.5G	236	141	$\varnothing 5$	250	155	176	4.5
SD95H-4T-7.5G							
SD95H-4T-11G	270	135	$\varnothing 6$	285	170	168	5.8
SD95H-4T-15G	318	140	$\varnothing 7$	332	200	204	9.0
SD95H-4T-18.5G							
SD95H-4T-22G	373	150		387	250	220	14
SD95H-4T-30G							
SD95H-4T-37G	426	180		440	270	252	23
SD95H-4T-45G							
SD95H-4T-55G	534	200	$\varnothing 9$	550	300	258	32

2.6 External Keyboard Dimension

Figure 2-3 Keypad Installation dimensions

Figure 2-4
Opening dimension diagram for keypad with base

Figure 2-5
Opening dimension diagram for keypad without base

2.7 Main Circuit Wiring Diagram

Figure 2-6 Main circuit wiring diagram

Note:

1. DC reactor, braking unit and braking resistor are optional accessories".
2. P1 and(+) are short circuited in factory, if need to connect with the DC reactor, please remove the contact tag between P1 and (+).
3. Do not install capacitor or surge suppressor on the output side of the AC drive. Otherwise, it may cause faults to the AC drive or damage to the capacitor and surge suppressor;
4. Input/output (main circuit) of the AC drive include harmonic components, which may interfere with the AC drive attachment communications equipment. Therefore, install an anti-aliasing filter to minimize the interference;

2.8 Control Circuit Wiring Diagram

Figure 2-7 Wiring diagram of Control Circuit

2.10 Dial Code Switch Function Description

Name	Jumpers Figure	Function	Factory default
485 (J4)	$\begin{gathered} \hline \mathrm{OFF} \\ \hline 9 \\ 0 \\ \hline \mathrm{ON} \end{gathered}$	Rs485 communicational terminal resistance selection ON: 120Ω terminal connection is valid OFF: without terminal connection	OFF
Ai1 (J3)	$\frac{1}{1} \begin{aligned} & 0 \\ & 9 \\ & 9 \end{aligned}$	I is for current input ($0 \sim 20 \mathrm{~mA}$) V is for voltage input ($0 \sim 10 \mathrm{~V}$)	0~10V
AO (J2)	$\frac{1}{1} \begin{aligned} & 0 \\ & 0 \\ & 9 \end{aligned}$	I is for current output ($0 \sim 20 \mathrm{~mA}$) V is for voltage output ($0 \sim 10 \mathrm{~V}$)	0~10V

2. 9 Control circuit terminals and function

Type	Terminal	Name	Function Description
Analog input	10V	Analog input Reference voltage	$10.5 \mathrm{~V}(\pm 3 \%)$
			Max output current: 25 mA , external potentiometer resistance range is more than $4 \mathrm{k} \Omega$
	Al1	Analog input	$0 \sim 20 \mathrm{~mA}$: input impedance 500Ω, maximum input current is 25 mA
			0~10V: input impedance 100Ω, max input voltage 12.5 V
			Input range: $0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$, switched by jumper J 3 on the control board and factory defaulted as voltage input.
Analog output	AO	Analog output	0~20mA: impedance 200 $2 \sim 500 \Omega$
			0~10V: impedance: $>10 \mathrm{k} \Omega$
			Output range: 0-10 V /4-20 mA, switched by jumper J2 on the control board and factory defaulted as voltage output.
Digital input	GND	Analog ground	The public ground of digital input terminals (S1-S5)
	S1-S5	Digital Input S1~S5	The specific function of multi-functional input terminals is set by F05.01~F05.05 It's valid when terminals and the GND are closed.
Digital output	Y	Open collector output	Voltage range: 0~24V
			Current range: 0~50mA
Relay output	ROA, ROC	Relay output	Normally open contact
			Contact capacity: 250VAC/3A, 30VDC/3A
High speed pulse	HDI, OP	High-speed pulse input	Pulse input: maximum frequency 50 kHz
			Voltage range:10V~30V
RS485	A	Rs485 signal +	Speed rate:1200/2400/4800/9600/19200/38400
	B	Rs485 signal -	Using twisted pair or shielded cable. The longest distance is 300 meters.
	GND	Rs485 grounding	

Chapter 3 Operation And Display

3.1 Introduction of the keypad

The keypad is used to control SD95H series AC drive, read the state data and adjust parameters.

Figure 3-1 Keypad diagram

No.	Name	Instructions		
1	Status indicator	RUN/TUNE	LED off means that the AC drive is in the stopping state; LED blinking means the AC drive is in the parameter autotuning state; LED on means the AC drive is in the running state.	
		FWD/REV	OFF means the AC drive is in the forward rotation state ON means the AC drive is in the reverse rotation state.	
		LOCAL/ REMOT	○ LOCAL/REMOT: OFF	Operation panel control
			- LOCAL/REMOT: PN	Terminal control
			(1) LOCAL/REMOT: Flash	Communication control
		TRIP	LED for faults LED on when the AC drive is in the fault state; LED off in normal state LED blinking means the AC drive is in the pre-alarm state.	

3.2 Viewing and Modifying Function Codes

The operation panel of inverters adopts three-level menu.
Operation procedure on the operation panel:

Fig.3-2 Operation Procedure of three-level Menu

Here is an example of changing the value of F 03.08 to 30.00 Hz :

Fig. 3-3Example of changing the parameter value
In Level III menu, if the parameter has no blinking digit, it means that the parameter cannotbe modified. This may be because:

1. Such a function code is only readable, such as, AC drive model, actually detected parameter and running record parameter.
2. Such a function code cannot be modified in the running state and can only be changed at stop.

Chapter 4 Function Parameters Table

Function Parameters Table

The function parameters of the series AC drive have been divided into 14 groups (FOO ~FOD) according to the function.

For the convenience of function codes setting, the function group number corresponds to the first level menu, the function code corresponds to the level 2 menu and the function code corresponds to the level 3 menu.

1. Below is the instruction of the function lists:

The first line"Function code":codes of function parameter group and parameters;

The second line"Name":full name of function parameters;
The third line"Setting range":effective setting value of the function parameters;
The fourth line"Default value":the original factory values of the function parameter;

The fifth line"Modify":the modifying character of function codes(the parameters can be modified or not and the modifying conditions), below is the instruction:
" \bigcirc " : means the set value of the parameter can be modified on stop and running state;
"○" : means the set value of the parameter can not be modified on the running state;
"-" : means the value of the parameter is the real detection value which can not be modified.
2. "Parameter radix" is decimal(DEC), if the parameter is expressed by hex, then the parameter is separated from each other when editing. The setting range of the certain bits are0-F(hex).
3. "Default" means the function code parameters will restore to the default value during default parameters restoring. But the actually detected parameter value or record value won't be restored.

Function Code	Name	Setting Range	Default	Property
Group F00 Basic Function				
F00.00	Speed control mode	0: V/F control 1: Vector mode 0 control	1	\bigcirc
F00.01	Run command channel	0 : Keypad running command channel (LED OFF) 1: Terminal running command channel (LED ON) 2: MODBUS communication running command channel (LED FLASH)	0	\bigcirc
F00.02	Maximum output frequency	F00.04~600.00 Hz	50 Hz	\bigcirc
F00.03	Upper limit of the running frequency	F00.04~F00.02 (Max. frequency)	50 Hz	\bigcirc
F00.04	Lower limit of the running frequency	$0.00 \mathrm{~Hz} \sim \mathrm{~F} 00.03$ (Upper limit)	0.0 Hz	\bigcirc
F00.05	A frequency command selection	0: Keypad digital setting 1: Panel potentiometer setting 2: Analog Al1 setting 3: Reserve	2	\bigcirc
F00.06	B frequency command selection	5: Simple PLC program setting 6: Multi-stage speed running setting 7: PID control setting 8: MODBUS communication setting	3	\bigcirc
F00.07	B frequency command reference	0 : Max output frequency 1: A frequency command	0	\bigcirc
F00.08	B frequency source gain coefficient	0.0~100.0\%	100.0\%	\bigcirc
F00.09	Combination mode of the setting	$\begin{aligned} & \text { 0: } A \\ & \text { 1: } B \\ & \text { 2: }(A+B) \\ & \text { 3: (A-B) } \\ & \text { 4: Max. (A, B) } \\ & \text { 5: Min. (A, B) } \end{aligned}$	0	O

Function Code	Name	Setting Range	Default	Property
F00.10	Keypad set frequency	$0.00 \mathrm{~Hz} \sim \mathrm{~F} 00.03$ (max. frequency)	50.00 Hz	0
		$0.00 \mathrm{~Hz} \mathrm{\sim F} 00.03$ (max. frequency)	50.00 Hz	
F00.11	Acceleration time 1	0.0~3600.0s	Model dependent	O
F00.12	Deceleration time 1	0.0~3600.0s	Model dependent	\bigcirc
F00.13	Running direction	0: Default direction 1: Reverse direction 2: Prohibit reverse running	0	0
F00.14	High frequency carrier setting	$2.0 \mathrm{kHz} \sim 10.0 \mathrm{kHz}$	Model dependent	0
F00.15	Low frequency carrier setting	$2.0 \mathrm{kHz} \sim \mathrm{F} 00.15$	Model dependent	0
F00.16	Motor parameter auto-tuning	0 : None 1: Stator resistance + No-load current auto-tuning 2: No-load current auto-tuning	0	\bigcirc
F00.17	Inverter type selection	0:General Inverter 1:High-Frequency Inverter	0	\bigcirc
F00.18	Function restore parameter	0: No operation 1: Restore default value 2: Cancel the fault record	0	\bigcirc
Group F01 Start-up and Stop Control				
F01.00	Start running mode	0: Start-up directly 1: Start-up after DC braking	0	\bigcirc
F01.01	Starting frequency of direct start	$0.00 \sim 50.00 \mathrm{~Hz}$ (General)	0.50 Hz	\bigcirc
		0.00~500.00Hz(High-Frequency)	5.0 Hz	
F01.02	Retention time of the starting frequency	0.0~200.0s	0.0s	\bigcirc
F01.03	Braking current before starting	0.0~150.0\%	0.0\%	\bigcirc
F01.04	Braking time before starting	0.0~200.0s	0.0s	\bigcirc

Function Code	Name	Setting Range	Default	Property
F01.05	ACC and DEC mode selection	0: Line 1: Reserve	0	\bigcirc
F01.06	Stop mode selection	0: Decelerate to stop 1: Coast to stop	0	\bigcirc
F01.07	Startingfrequency of stop braking	0.00~F00.02 (Max. frequency)	0.00 Hz	\bigcirc
F01.08	Waiting time of stop braking	0.0~100.0s	0.0s	\bigcirc
F01.09	Stop DC braking current	0.0~150.0\%	0.0\%	0
F01.10	Stop DC braking time	0.0~200.0s	0.0s	\bigcirc
F01.11	Stop DC braking current decay time	0.0~200.0s	0.0s	\bigcirc
F01.12	Dead time of FWD/REV rotation	0.0~60.0s	0.0s	\bigcirc
F01.13	Shift mode of FWD/REV rotation	0 : Shift after zero frequency 1: Shift after starting frequency 2: Shift after stopping speed and delay time (delay time is set by F01.23)	0	\bigcirc
F01.14	Stopping frequency	$0.00 \sim 100.00 \mathrm{~Hz}$ (General)	1.00 Hz	\bigcirc
		0.00~1000.00Hz(High-Frequency)	10.00 Hz	
F01.15	Detection time of stop frequency	0.0~100.0s	0.5s	\bigcirc
$\begin{aligned} & \text { F01.16 } \\ & \sim F 01.17 \end{aligned}$	Reserve	0	0	\bullet
F01.18	Action if running frequency < frequency lower limit (Valid: > 0)	0 : Run at lower limit frequency 1: Stop 2: Zero speed operation	0	\bigcirc
F01.19	Hibernation restore delay Time	0.0~3600.0s (F01.18 = 2 is valid)	0.0s	\bigcirc
F01.20	Restart after power off	0: Disable 1: Enable	0	\bigcirc

Function Code	Name	Setting Range	Default	Property
F01.21	Waiting time of restart after power off	0.0~3600.0s (F01.20=1 is valid)	1.0s	0
F01.22	Start delay time	$0.0 \sim 60.0 \mathrm{~s}$	0.0s	\bigcirc
F01.23	Delay time of the stop speed	0.0~100.0s	0.0s	\bigcirc
Group F02 Motor Parameters				
F02.00	General Motor rated power	0.1~100.0kW	Model dependent	\bigcirc
F02.01	General Motor rated voltage	10~1200V	Model dependent	\bigcirc
F02.02	General Motor rated current	0.8~1000.0A	Model dependent	\bigcirc
F02.03	General Motor rated frequency	$5.0 \mathrm{~Hz} \sim \mathrm{~F} 00.02$ (max frequency)	50.00 Hz	\bigcirc
F02.04	General Motor rated speed	30~36000rpm	Model dependent	\bigcirc
F02.05	General Motor stator resistance	0.001~65.535	Model dependent	\bigcirc
F02.06	General Motor no-load current	0.1~1000.0A	Model dependent	\bigcirc
F02.07	Overload protection selection	0: No protection 1: General Motor protection	1	\bigcirc
F02.08	Overload protection coefficient	20.0\% 150.0%	100.0\%	\bigcirc
Group F03 High-frequency Motor Parameters				
F03.00	Maximum output frequency	600~2000.00 Hz	800 Hz	๑
F03.01	Upper limit of the running frequency	F03.02~F03.00(Max. frequency)	800 Hz	\odot
F03.02	Lower limit of the running frequency	$0.00 \mathrm{~Hz} \sim \mathrm{~F} 03.01$ (Upper limit)	0.0 Hz	๑
F03.03	High-frequency Motor rated power	0.1~100.0kW	Model dependent	\bigcirc
F03.04	High-frequency Motor rated voltage	10~1200V	Model dependent	\bigcirc
F03.05	High-frequency Motor rated current	0.8~1000.0A	Model dependent	\bigcirc
F03.06	High-frequency Motor rated frequency	$10.0 \mathrm{~Hz} \sim \mathrm{~F} 03.00$ (max frequency)	800.00 Hz	\bigcirc

Function Parameters Table

Function Code	Name	Setting Range	Default	Property
F03.07	High frequency motor pole logarithm	1~16	Model dependent	\bigcirc
F03.08	High-frequency motor Rated slip	0.1~100.0HZ	24.0 HZ	\bigcirc
F03.09	High-frequency Motor stator resistance	0.001~65.535	Model dependent	\bigcirc
F03.10	High-frequency Motor no-load current	0.1~1000.0A	Model dependent	0
F03.11	Overload protection selection	0: No protection 1: High-frequency Motor protection	1	\bigcirc
F03.12	Overload protection coefficient	20.0\% ~ 150.0\%	100.0\%	\bigcirc
Group F04 V/F Control				
F04.00	General Motor V/F curve setting	0: Linear V/F curve 1: Multiple-point V/F curve 2: $1.3^{\text {th }}$ power low torque V/F curve 3: $1.7^{\text {th }}$ power low torque V/F curve 4: $2.0^{\text {th }}$ power low torque V/F curve	0	\bigcirc
F04.01	Torque boost	0.0\% (Automatic); 0.1\%~20.0\%	0.0\%	\bigcirc
F04.02	Torque boost close	0.0~50.0\% (Relative to motor rated frequency)	20.0\%	\bigcirc
F04.03	General Motor V/F frequency point 1	0.00Hz~F03.05	00.00 Hz	\bigcirc
F04.04	General Motor V/F voltage point1	0.0~100.0\% (Motor rated voltage)	00.0\%	\bigcirc
F04.05	General Motor V/F frequency point 2	F03.03~F03.07	00.00 Hz	\bigcirc
F04.06	General Motor V/F voltage point 2	0.0~100.0\% (Motor rated voltage)	00.0\%	\bigcirc
F04.07	General Motor V/F frequency point 3	$\begin{aligned} & \hline \text { F03.05~F02.03 } \\ & \text { (Motor rated frequency) } \\ & \hline \end{aligned}$	00.00Hz	\bigcirc
F04.08	General Motor V/F voltage point 3	0.0~100.0\% (Motor rated voltage)	00.0\%	\bigcirc
F04.09	General Motor V / F slip compensation gain	0.0~200.0\%	100.0\%	\bigcirc
F04.10	Low frequency suppression oscillation factor	0~30	2	\bigcirc
F04.11	High frequency suppression oscillation factor	0~30	2	\bigcirc

$\begin{array}{\|c\|} \hline \text { Function } \\ \text { Code } \\ \hline \end{array}$	Name	Setting Range	Default	Property
F04.12	Motor suppression oscillation demarcation point	0.00Hz~F00.02 (Max frequency)	30.00 Hz	\bigcirc
F04.13	High-frequency Motor V/F curve setting	0: Linear V/F curve 1: Multiple-point V/F curve	0	\bigcirc
F04.14	High-frequency Motor Torque boost	$\begin{aligned} & \text { 0.0\% (Automatic); } \\ & 0.1 \% \sim 20.0 \% \end{aligned}$	0.0\%	\bigcirc
F04.15	High-frequency Motor Torque boost close	0.0~50.0\% (Relative to motor rated frequency)	20.0\%	\bigcirc
F04.16	High-frequency Motor V/F frequency point 1	$0.00 \mathrm{~Hz} \sim$ F04.18	10.0\%	\bigcirc
F04.17	High-frequency Motor V/F voltage point1	0.0~100.0\% (Motor rated voltage)	14.5\%	\bigcirc
F04.18	High-frequency Motor V/F frequency point 2	F04.16~F04.20	50.0\%	\bigcirc
F04.19	High-frequency Motor V/F voltage point 2	0.0~100.0\% (Motor rated voltage)	50.0\%	\bigcirc
F04.20	High-frequency Motor V/F frequency point 3	$\begin{aligned} & \text { F04.18~F03.06 } \\ & \text { (Motor rated frequency) } \end{aligned}$	80.0\%	\bigcirc
F04.21	High-frequency Motor V/F voltage point 3	0.0~100.0\% (Motor rated voltage)	80.0\%	\bigcirc
F04.22	High-frequency V / F slip compensation gain	0.0~200.0\%	100.0\%	\bigcirc
F04.23	High-frequency Motor Low frequency suppression oscillation factor	0~30	2	0
F04.24	High-frequency Motor High frequency suppression oscillation factor	0~30	2	0
F04.25	High-frequency Motor suppression oscillation demarcation point	$0.00 \mathrm{~Hz} \sim \mathrm{~F} 03.00$ (Max frequency)	30.00 Hz	\bigcirc
F04.26	AVR function selection	0 : Invalid 1: Valid	1	\bigcirc
F04.27	Energy-saving operation	0:No operation 1:Automatic energy-saving operation	1	\bigcirc
F04.28	Slip compensation filter time	0.00~5.00S	0.4S	0

$\begin{array}{\|c\|} \hline \text { Function } \\ \text { Code } \\ \hline \end{array}$	Name	Setting Range	Default	Property
F05.07	Polarity selection of input terminals	$\begin{aligned} & 0 \times 00 \sim 0 \times 3 F \\ & \text { Bit5 } \\ & \text { Bit4 } \\ & \text { HDI } \\ & \text { S5 } 5 \\ & \text { S4 } \end{aligned} \text { Bit2 } \begin{array}{ll} \text { S3 } & \text { Bit1 } \\ \text { Bit0 } & \text { S1 } \end{array}$	0x00	\bigcirc
F05.08	ON-OFF filter time	0.000~1.000s	0.010s	\bigcirc
F05.09	Virtual terminal setting	0 : Virtual terminal is invalid 1: MODBUS communication virtual terminal is valid	0	\bigcirc
F05.10	Terminals control running modes	0 : Two-line control 1 1: Two-line control 2 2: Three-line control 1 3: Three-line control 2	0	\bigcirc
F05.11	Switch-on delay of S1 terminal	0.000~50.000s	0.000s	\bigcirc
F05.12	Switch-off delay of S1 terminal	0.000~50.000s	0.000s	\bigcirc
F05.13	Switch-on delay of S2 terminal	0.000~50.000s	0.000s	\bigcirc
F05.14	Switch-off delay of S2 terminal	0.000~50.000s	0.000s	\bigcirc
F05.15	Switch-on delay of S3 terminal	0.000~50.000s	0.000s	\bigcirc
F05.16	Switch-off delay of S3 terminal	0.000~50.000s	0.000s	\bigcirc
F05.17	Switch-on delay of S4 terminal	0.000~50.000s	0.000s	\bigcirc
F05.18	Switch-off delay of S4 terminal	0.000~50.000s	0.000s	\bigcirc
F05.19	Switch-on delay of S5 terminal	0.000~50.000s	0.000s	\bigcirc
F05.20	Switch-off delay of S5 terminal	0.000~50.000s	0.000s	\bigcirc
F05.21	Switch-on delay of HDI terminal	0.000~50.000s	0.000s	\bigcirc
F05.22	Switch-off delay of HDI terminal	0.000~50.000s	0.000s	\bigcirc

Function Code	Name	Setting Range	Default	Property
F05.23	Reserve			\bigcirc
F05.24	Lower limit frequency of HDI	0.00kHz~F05.26	0.00kHz	\bigcirc
F05.25	Corresponding setting of lower limit frequency of HDI	-100.0~100.0\%	0.0\%	\bigcirc
F05.26	Upper limit frequency of HDI	F05.24 ~50.00kHz	50.00 kHz	\bigcirc
F05.27	Corresponding setting of upper limit frequency of HDI	-100.0~100.0\%	100.0\%	\bigcirc
F05.28	HDI frequency input filter time	0.000~10.000s	0.100s	\bigcirc
F05.29	Lower limit value of Al1	0.00V~F05.31	0.03 V	\bigcirc
F05.30	Corresponding setting of lower limit of Al1	-100.0~100.0\%	0.0\%	\bigcirc
F05.31	Al1 upper limit value	F05.29~10.00V	9.80 V	\bigcirc
F05.32	Corresponding setting of upper limit of Ai1	-100.0~100.0\%	100.0\%	\bigcirc
F05.33	Al1 input filter time	0.000~10.000s	0.150s	\bigcirc
F05.34	Keypad analog filter time	0.000~10.000s	0.100s	\bigcirc
$\begin{aligned} & \text { F05.35 } \\ & \sim \text { F05.38 } \end{aligned}$	Reserve			\bigcirc

Function Code	Name	Setting Range	Default	Property
Group F06 Output Terminals				
F06.00	Reserve	0	0	\bullet
F06.01	Y output selection	0 : Invalid 1: Running 2: Forward running 3: Reverse running 4: Jog running 5: AC drive fault 6: Frequency level detection FDT1 7: Frequency level detection FDT2 8: Frequency reached 9: Zero-speed running 10: Upper limit frequency reached 11: Lower limit frequency reached 12: Ready for running 13: Reserve 14: Overload pre-alarming 15: Underload per-alarming 16~19: Reserve 20: External fault is valid 21: Reserve 22: Running time reached 23: MODBUS communication virtual terminal output 24: Reserve	1	0
F06.02	Reserve		0	-
F06.03	Relay RO output selection		1	\bigcirc
F06.04	Reserve		0	\bullet
F06.05	Polarity of output terminals	$\begin{array}{cccc} 0 \times 0 \sim 0 \times 3 \\ \text { Bit3 } & \text { Bit2 } & \text { Bit1 } & \text { Bit0 } \\ 0 & 0 & Y & R O \end{array}$	0x0	\bigcirc
F06.06	Y switch-on delay time	0.000~50.000s	0.000s	\bigcirc
F06.07	Y switch-off delay time	0.000~50.000s	0.000s	\bigcirc
F06.08	Relay RO switchon delay time	0.000~50.000s	0.000s	\bigcirc
F06.09	Relay RO switchoff delay time	0.000~50.000s	0.000s	\bigcirc

Function Code	Name	Setting Range	Default	Property
F06.10	AO output selection	0 : Running frequency 1: Set frequency 2: Ramp reference frequency 3: Running speed 4: Output current (relative to AC drive rated current) 5: Output current (relative to motor rated current) 6: Output voltage 7: Output power 8: Reserve 9: Output torque 10: Analog Al1 input value 11: Reserve 12: Reserve 13: High-speed pulse HDI input value 14: MODBUS communication setting value 1 15: MODBUS communication setting value 2	0	\bigcirc
F06.11	Lower output limit of AO	0.0\% ~F06.13	0.0\%	\bigcirc
F06.12	Corresponding AO output of lower limit	0.00~10.00V	0.00V	\bigcirc
F06.13	Upper output limit of AO	F06.11~100.0\%	100.0\%	0
F06.14	Corresponding AO output of upper limit	0.00~10.00V	10.00 V	\bigcirc
F06.15	Ao output filter time	0.000~10.000s	0.000s	\bigcirc
Group F07 HMI Group				
F07.00	User's password	0~65535	0	\bigcirc
F07.01	S key function selection	0 : No function 1: Jog running 2: Shift the display state by the shifting key 3: Shift between forward rotations and reverse 4: Clear UP/DOWN settings 5: Coast to stop 6: Command source switch	1	\bigcirc

Function Code	Name	Setting Range	Default	Property
F07.02	Shifting sequence selection of S commands	When F07.01=6, set the shifting sequence of running command channels. 0: Keypad control \rightarrow terminals control \rightarrow communication control 1: Keypad control \longleftrightarrow terminals control 2: Keypad control \longleftrightarrow communication control 3: Terminals control \longleftrightarrow communication control	0	\bigcirc
F07.03	STOP/RESET stop function selection	0: Only valid for keypad control 1: Both valid for keypad and terminal control 2: Both valid for keypad and communication control 3: Valid for all control modes	0	\bigcirc
F07.04	Parameters state 1	0x0000~0xFFFF Bit0: Running frequency (Hz ON) Bit1: Set frequency (Hz blinking) Bit2: Bus voltage Bit3: Output voltage Bit4: Output current (A ON) Bit5: Running speed Bit6: Output power Bit7: Output torque Bit8: PID reference value Bit9: PID feedback value Bit10: Input terminal state Bit11: Output terminal state Bit12~BIT14:Reserve Bit15: The current stage in Multi-stage speed/PLC	0x03FF	\bigcirc
F07.05	Parameters state 2	0x00~0x1F Bit0: Analog Al1 value Bit1: Motor overload percentage Bit2: AC drive overload percentage Bit3: Ramp frequency setting value (Hz is ON) Bit4: Linear speed Bit5~BIT15: Reserve	0×00	\bigcirc

Function Code	Name	Setting Range	Default	Property
F07.06	Parameters for stopping state	0x000~0x7FF Bit0: Set frequency (Hz is flicking slowly) Bit1: Bus voltage Bit2: Input terminal state Bit3: Output terminal state Bit4: PID reference value Bit5: PID feedback value Bit6: Reserve Bit7: Analog Al1 value Bit8: High-spped pulse HDI frequency Bit9: The current stage in Multi-stage speed/PLC Bit9: Pulse count value Bit10~Bit15: Reserve	0x0FF	\bigcirc
F07.07	Frequency display coefficient	$\begin{aligned} & 0.01 \sim 10.00 \\ & \text { Displayed frequency }=\text { running } \\ & \text { frequency } \times 07.07 \end{aligned}$	1.00	0
F07.08	Rotation speed display coefficient	$\begin{aligned} & \text { 0.1~999.9\% } \\ & \text { Mechanical rotation speed }=60 \text { * } \\ & \text { running frequency * F07.08 / Motor } \\ & \text { pole pairs } \end{aligned}$	100.0\%	\bigcirc
F07.09	Linear speed display coefficient	$\begin{aligned} & \text { 0.1~999.9\% } \\ & \text { Linear speed = Mechanical rotation } \\ & \text { speed *F07.09 } \\ & \hline \end{aligned}$	1.0\%	\bigcirc
F07.10	Reserve	0	0	-
F07.11	Converter module temperature	0.0~120.0 ${ }^{\circ} \mathrm{C}$	-	\bullet
F07.12	Control board software version	1.00~655.35	-	-
F07.13	Cumulative running time of the unit	0-65535h	0	\bigcirc
F07.14	Current fault type		-	\bullet
F07.15	Previous 1 fault type	See Chapter 5 Common Faults and Solutions	-	\bullet
F07.16	Previous 2 fault type		-	\bullet

Function Parameters Table

$\begin{array}{\|c\|} \hline \text { Function } \\ \text { Code } \end{array}$	Name	Setting Range	Default	Property
F07.17	Running frequency at current fault	--	0.00 Hz	\bullet
F07.18	Ramp reference frequency at current fault	--	0.00 Hz	\bullet
F07.19	Output voltage at current fault	--	OV	\bullet
F07. 20	Output current at current fault	--	0.0A	\bullet
F07.21	Bus voltage at current fault	--	0.0V	\bullet
F07.22	The Max. temperature at current fault	--	$0.0{ }^{\circ} \mathrm{C}$	\bullet
F07.23	Input terminals state at current fault	--	0	\bullet
F07.24	Output terminals state at current fault	--	0	\bullet
Group F08 Enhanced Group				
F08.00	Acceleration time 2	0.0~3600.0s	Model dependent	\bigcirc
F08.01	Deceleration time 2	0.0~3600.0s	Model dependent	\bigcirc
F08.02	Acceleration time 3	0.0~3600.0s	$\begin{gathered} \text { Model } \\ \text { dependent } \end{gathered}$	\bigcirc
F08.03	Acceleration time 3	0.0~3600.0s	Model dependent	\bigcirc
F08.04	Deceleration time 4	0.0~3600.0s	$\begin{array}{\|c\|} \hline \text { Model } \\ \text { dependent } \end{array}$	\bigcirc
F08.05	Acceleration time 4	0.0~3600.0s	Model dependent	\bigcirc
F08.06	$\begin{gathered} \text { Jogging } \\ \text { frequency } \\ \hline \end{gathered}$	0.00~F00.03 (Max. frequency)	5.00 Hz	\bigcirc
F08.07	Jogging ACC time	0.0~3600.0s	Model dependent	\bigcirc
F08.08	Jogging DEC time	0.0~3600.0s	Model dependent	\bigcirc
F08.09	Fault auto reset times	0~10	0	\bigcirc

Function Code	Name	Setting Range	Default	Property
F08.10	Interval time of fault auto reset	0.1~3600.0s	1.0s	\bigcirc
F08.11	Frequency decreas--ing ratio of the dropping control	$0.00 \sim 10.0 \mathrm{HZ}$ (invalid for high frequency motor)	0.00 Hz	\bigcirc
F08.12	Motor shifting	0 : F00.17 shifting; 1: terminal shifting; (digital terminal is 35) 2: MODBUS communication shifting	0	\bigcirc
F08.13	FDT1 electrical level detection value (General Motor)	0.00~F00.02 (Max. frequency)	50.00 Hz	\bigcirc
F08.14	FDT1 retention detection value (General Motor)	0.0~100.0\% (FDT1 level)	5.0\%	\bigcirc
F08.15	$\begin{gathered} \text { FDT2 electrical level } \\ \text { detection value } \\ \text { (General Motor) } \end{gathered}$	0.00~F00.02 (Max. frequency)	50.00 Hz	\bigcirc
F08.16	FDT2 retention detection value (General Motor)	0.0~100.0\% (FDT2 level)	5.0\%	0
F08.17	Frequency arrival detection value (General Motor)	0.0~F00.02 (Max. frequency)	0.00 Hz	\bigcirc
F08.18	FDT1 electrical level detection value (High-Frequency Motor)	0.00~F03.00 (Max. frequency)	50.00 Hz	\bigcirc
F08.19	FDT1 retention detection value (High-Frequency Motor)	0.0~100.0\% (FDT1 level)	5.0\%	\bigcirc
F08.20	FDT2 electrical level detection value (High-Frequency Motor)	0.00~F03.00 (Max. frequency)	50.00 Hz	0
F08.21	FDT1 retention detection value (High-Frequency Motor)	0.0~100.0\% (FDT2 level)	5.0\%	\bigcirc
F08.22	Frequency arrival detection value (High-Frequency Motor)	0.0~F03.00 (Max. frequency)	0.00 Hz	0

$\begin{array}{\|c\|} \hline \text { Function } \\ \text { Code } \\ \hline \end{array}$	Name	Setting Range	Default	Property
F08.23	Energy braking enable	0: Energy braking disable 1: Energy braking enable	1	\bigcirc
F08.24	Threshold voltage of energy braking	200.0~1000.0V	220 V level:380.0 V $\|$380 V level: 700.0 V	\bigcirc
F08.25	Reserve	0	0	\bullet
F08.26	Over commission selection	0 : Over commission is invalid 1: Over commission is valid	1	\bigcirc
F08.27	Keypad digital control setting	0x000~0x1221 LED ones: frequency control selection $0: ~ \wedge / v$ key adjustment is invalid 1 : \wedge / v key adjustment is valid LED tens: frequency control 0 : Only valid for $\mathrm{F} 00.05=0$ or F00.06=0 setting 1: Valid for all frequency modes 2: Invalid for MS when MS is priority LED hundreds: stop action selection 0 : Setting is valid 1: Valid during running, cleared after stopping 2: Valid during running, cleared after receiving the stop command LED thousands: \wedge / v key integral function 0 : Integral function is valid 1: Integral function is invalid	0x0001	\bigcirc
F08.28	Integral ratio of the keypad \wedge / v	0.01~10.00s	0.10s	\bigcirc
F08.29	UP/DOWN terminal control setting	0x000~0x221 LED ones: frequency control 0: UP/DOWN terminal setting valid 1: UP/DOWN terminal setting invalid LED tens: frequency control 0 : Only valid for $\mathrm{F} 00.05=0$ or F00.06=0 setting 1: Valid for all frequency modes 2: Invalid for multi-sted when multi-sted is priority LED hundreds: Action selection when stop 0 : Setting is valid	0x000	\bigcirc

Function Code	Name	Setting Range	Default	Property
F08.29	UP/DOWN terminal control setting	1: Valid in running, clear after stop 2: Valid in running, clear after receiving the stop commands	0×000	\bigcirc
F08.30	Up terminal frequency changing ratio	0.01~50.00s	0.50s	\bigcirc
F08.31	DOWN terminal frequency changing ratio	0.01~50.00s	0.50s	\bigcirc
F08.32	Frequency setting at power loss	$0 \times 00 \sim 0 \times 011$ LED ones: Action selection when power off 0 : Save when power off 1: Clear when power off LED tens: Action selection when MODBUS set frequency power off 0 : Save when power off 1: Clear when power off	0×00	\bigcirc
F08.33	Magnetic flux braking	0 : invalid 1~100: The bigger the coefficient, the stronger the braking is.	0	\bigcirc
F08.34	Rs485 communi--cation selection in high frequency mode	0: Rs485 communication is invalid 1: Rs485 communication is valid	1	\bigcirc
Group F09 PID Control				
F09.00	PID reference source selection	0: Keypad digital reference(F09.01) 1: Analog channel Al1 reference 2: Reserve 3: High-speed pulse HDI setting 4: MS reference 5: MODBUS communication setting	0	\bigcirc
F09.01	Keypad preset PID reference	-100.0~100.0\%	0.0\%	0
F09.02	PID feedback source selection	0: Analog channel Al1 feedback 1: Reserve 2: High-speed pulse HDI feedback 3: MODBUS communication feedback	0	\bigcirc
F09.03	PID output feature selection	0 : PID output is positive 1: PID output is negative	0	\bigcirc
F09.04	Proportional gain (Kp 1)	0.00~100.00	0.50	\bigcirc

Function Code	Name	Setting Range	Default	Property
F09.05	Integral time1 (Ti 1)	0.00~10.00s	0.20s	0
F09.06	Differential time 1 (Td 1)	0.00~10.00s	0.00s	\bigcirc
F09.07	Sampling cycle (T)	0.01~100.00s	0.10s	\bigcirc
F09.08	PID control deviation limit	0.0~100.0\%	0.0\%	\bigcirc
F09.09	Output upper limit of PID	$\begin{aligned} & \text { F09.10~100.0\% } \\ & \text { (Max. frequency) } \end{aligned}$	100.0\%	\bigcirc
F09.10	Output lower limit of PID	$\begin{aligned} & \hline-100.0 \% \sim \text { F09.09 } \\ & \text { (Max. frequency) } \end{aligned}$	0.0\%	\bigcirc
F09.11	Detection value of feedback offline	0.0~100.0\%	0.0\%	\bigcirc
F09.12	Detection time of feedback offline	0.0~3600.0s	1.0s	\bigcirc
F09.13	PID adjustment selection	0x00~0x11 LED ones 0: Keep on integral adjustment when the frequency achieves the upper and lower limit. 1: Stop integral adjustment when the frequency achieves the upper and lower limit LED tens 0 : The same with the setting direction 1: Opposite to the setting direction	0×00	\bigcirc
F09.14	Proportional gain 2 (Kp2)	0.00~100.00	0.50	\bigcirc
F09.15	Integral time 2 (Ti2)	0.00~10.00s	0.20s	\bigcirc
F09.16	Differential time 2 (Td2)	0.00~10.00s	0.00s	\bigcirc
F09.17	Switchover selection of PID parameters	0: Without switchover 1: Switch according to the input deviation 2: Switch according to terminal.	0	\bigcirc

Function Parameters Table

Function Code	Name	Setting Range	Default	Property
F09.18	Input deviation threshold when PID switching	0.0~100.00\%	20\%	\bigcirc
F09.19	PID initial value	-100.0\% 100.0%	0.0\%	\bigcirc
F09.20	PID initial holding time	0.0~3600.0s	60.0s	\bigcirc
Group FOA Simple PLC and Multi- step Speed Control				
F0A. 00	Simple PLC mode	0 : Stop after running once 1: Run at the final value after running once 2: Cycle running	0	\bigcirc
F0A. 01	Simple PLC retentive selection	0 : No retentive upon power failure 1: Retentive upon power failure	0	\bigcirc
F0A. 02	Multi-stage speed 0	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 03	The running time of step 0	$0.0 \sim 6553.5 \mathrm{~s}$ (min)	0.0s	\bigcirc
F0A. 04	Multi-stage speed 1	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 05	The running time of step 1	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 06	Multi-stage speed 2	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 07	The running time of step 2	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 08	Multi-stage speed 3	-100.0~100.0\%	0.0\%	0
F0A. 09	The running time of step 3	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 10	Multi-stage speed 4	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 11	The running time of step 4	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 12	Multi-stage speed 5	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 13	The running time of step 5	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 14	Multi-stage speed 6	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 15	The running time of step 6	0.0~6553.5s(min)	0.0s	0

Function Code	Name	Setting Range	Default	Property
F0A. 16	Multi-stage speed 7	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 17	The running time of step 7	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 18	Multi-stage speed 8	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 19	The running time of step 8	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 20	Multi-stage speed 9	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 21	The running time of step 9	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 22	Multi-stage speed10	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 23	The running time of step 10	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 24	Multi-stage speed11	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 25	The running time of step 11	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 26	Multi-stage speed12	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 27	The running time of step 12	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 28	Multi-stage speed13	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 29	The running time of step 13	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 30	Multi-stage speed14	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 31	The running time of step 14	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 32	Multi-stage speed15	-100.0~100.0\%	0.0\%	\bigcirc
F0A. 33	The running time of step 15	0.0~6553.5s(min)	0.0s	\bigcirc
F0A. 34	Simple PLC 0~7 step ACC/DEC time	0x000~0xFFFF	0x0000	\bigcirc
F0A. 35	Simple PLC 8~15 step ACC/DEC time	0x000~0xFFFF	0x0000	\bigcirc

$\begin{array}{\|c\|} \hline \text { Function } \\ \text { Code } \\ \hline \end{array}$	Name	Setting Range	Default	Property
F0A. 36	PLC restart mode selection	0: Restart from the first step. 1: Continue to run from the stop frequency.	0	\bigcirc
F0A. 37	Multi-stage time unit	0 : seconds 1: minutes	0	\bigcirc
Group FOB Protective Parameters				
F0B. 00	Output phase loss protection	0 : Invalid 1: Valid	1	\bigcirc
F0B. 01	Frequency decreasing at sudden power loss	0 : Invalid 1: Valid	0	\bigcirc
F0B. 02	Frequency decreasing ratio at sudden power loss	0.00~50.00Hz/S(General Motor)	$10.00 \mathrm{~Hz} / \mathrm{s}$	\bigcirc
		0.0~500.00Hz/S(HF Motor)	$100.00 \mathrm{~Hz} / \mathrm{s}$	
F0B. 03	Over-voltage stall protection	0 : Invalid 1: Valid	1	\bigcirc
F0B. 04	Voltage protection of over-voltage stall	120~150\% (Standard bus voltage 220V)	130\%	\bigcirc
		120~150\% (Standard bus voltage 380V)	120\%	
F0B. 05	Current limit action selection	0 : Current-limiting is invalid 1: Current-limiting is valid	1	\bigcirc
F0B. 06	Automatic current limit	50.0~200.0\%	165\%	\bigcirc
F0B. 07	Frequencydecreasing ratio during current limit	0.00~50.00Hz/S(General Motor)	$10.00 \mathrm{~Hz} / \mathrm{s}$	\bigcirc
		0.0~500.00Hz/S(HF Motor)	$100.00 \mathrm{~Hz} / \mathrm{s}$	
F0B. 08	Overload pre-alarm of motor/inverter	0x000-0x111 LED ones: 0 : Overload pre-alam of the motor, relative to the rated current of the motor 1: Overload pre-alam of the inverter, relative to the rated current of the inverter LED tens : 0 : The inverter continues to work after underload pre-alarm 1: The inverter continues to work after underload pre-alam and the inverter stops to run after overload fault	0x000	\bigcirc

$\begin{array}{\|c\|} \hline \text { Function } \\ \text { Code } \\ \hline \end{array}$	Name	Setting Range	Default	Property
F0B. 09	Overload pre-alarm detection	F0C.12~200\%	150\%	\bigcirc
F0B. 10	Overload pre-alarm detection time	0.1~60.0s	0.0s	\bigcirc
F0B. 11	Output terminal action during fault	$0 \times 00 \sim 0 \times 11$ LED ones 0 : Action under fault undervoltage 1: No action under fault undervoltage LED tens 0 : Action during the automatic reset 1: No action during the automatic reset	0x00	\bigcirc
F0B. 12	PWM selection	$0 \times 000-0 \times 111$ LED ones: $0: 3 \mathrm{PH}$ and 2 PH modulation 1: 3PH modulation LED tens:	0×00	\bigcirc
Group FOC Serial Communication Function				
F0C. 00	Local communication address	0~247 (0 is the broadcast address)	1	\bigcirc
F0C. 01	Communication baud ratio setting	0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS	4	0
F0C. 02	Digital bit checkout setting	0 : No check (N, 8, 1) for RTU 1: Even check (E, 8, 1) for RTU 2: Odd check $(0,8,1)$ for RTU 3: No check (N, 8, 2) for RTU 4: Even check (E, 8, 2) for RTU 5: Odd check (O, 8, 2) for RTU	1	0
F0C. 03	Answer delay	0~200ms	5 ms	\bigcirc
F0C. 04	Fault time of communication overtime	0.0 (invalid), 0.1~60.0s	0.0s	\bigcirc

Function Code	Name	Setting Range	Default	Property
F0C. 05	Transmission fault processing	0 : Alarm and stop freely 1: No alarm and continue to run 2: No alarm and stop according to the stop mode (Only under the communication control) 3: No alarm and stop according to the mode (Under all control modes)	0	\bigcirc
F0C. 06	Communication processing action selection	0 : Write with response. 1: Write without response.	0	\bigcirc
F0C. 07	Host broadcast interval time	$10 \mathrm{~ms}-5000 \mathrm{~ms}$	200ms	\bigcirc
Group FOD Monitoring Function				
F0D. 00	Setting frequency	$0.00 \mathrm{~Hz} \sim \mathrm{~F} 00.03$	0.00 Hz	\bullet
F0D. 01	Output frequency	$0.00 \mathrm{~Hz} \sim$ F00.03	0.00 Hz	\bullet
F0D. 02	Ramp reference frequency	$0.00 \mathrm{~Hz} \sim$ F00.03	0.00 Hz	\bullet
F0D. 03	Output voltage	0~1200V	OV	\bullet
F0D. 04	Output current	0.0~5000.0A	0.0A	\bullet
F0D. 05	Motor speed	0~65535rpm	0 rpm	-
F0D. 06	High frequency motor speed 1	0~100(*100000rpm)(valid for HFM)	0	\bullet
F0D. 07	High frequency motor speed 1	0~99999(valid for HFM)	0	\bullet
F0D. 08	Motor power	-300.0~300.0\% (relative to motor rated power)	0.0\%	\bullet
F0D. 09	Output torque	$\begin{aligned} & \hline-250.0 \sim 250.0 \% \\ & \text { (relative to motor rated torque) } \\ & \hline \end{aligned}$	0.0\%	\bullet
F0D. 10	DC bus voltage	0.0~2000.0V	OV	\bullet
F0D. 11	Digital input terminals state	0x00~0x1F	0	\bullet
F0D. 12	Digital output terminals state	0~3	0	\bullet
F0D. 13	Digital adjustment	0.00Hz~F00.02	0.00 Hz	\bullet

Function Code	Name	Setting Range	Default	Property
F0D.14	The motor type	0: General Motor 1: High-Frequency Motor	0	\bullet
F0D.15	Al1 input voltage	$0.00 \sim 10.00 \mathrm{~V}$	0.00 V	\bullet
F0D.16	HDI input frequency	$0.00 \sim 50.00 \mathrm{kHz}$	0.00 kHz	\bullet
F0D.17	PID reference value	$-100.0 \sim 100.0 \%$	0.0%	\bullet
F0D.18	PID feedback value	$-100.0 \sim 100.0 \%$	0.0%	\bullet
F0D.19	Power factor of the motor	$-1.00 \sim 1.00$	-	\bullet
F0D.20	The running time	$0-65535 \mathrm{~min}$	0	\bullet
F0D.21	The current step of	$0 \sim 15$	0	\bullet

Chapter 5 Troubleshooting

Danger

+ Only qualified electricians are allowed to maintain the AC drive. Read the safety instruction in chapter safety precaution before working on the AC drive.

5.1 Fault Code List

No	Fault Code	Fault Type	Possible Causes	Solutions
1	E.oc1	Accelerating overcurrent	- The acceleration and deceleration is too fast; - The voltage of grid is too low; - The power of AC drive is too low; - The load transients or is abnormal; - The grounding is short circuited and the output is phase loss; - There is a strong external interference	- Increase the ACC and DEC time; - Check the input power; - Select the AC drive with a larger power; - Check if the load is short circuited (the grounding short circuited or the wire short circuited) or the rotation is not smooth; - Check the output configuration; - Check if there is strong interference.
2	E.oc2	Decelerating overcurrent		
3	E.oc3	Constant overcurrent		
4	E.oU1	Accelerating overvoltage	- Input voltage is abnormal; - There is large energy feedback.	- Check the input power; - Check if the DEC time of the load is too short, or the AC drive starts during the rotation of the motor or it needs to increase the energy consumption components.
5	E.oU2	Decelerating overvoltage		
6	E.oU3	Constant overvoltage		
7	E.LU	Bus undervoltage fault	- The voltage of power supply is too low.	- Check the input power of the supply line
8	E.oL1	Motor overload	- The voltage of power supply is too low; - The motor setting rated current is incorrect; - The motor stall or load transients is too strong.	- Check voltage of power supply - Reset the rated current of the motor; - Check the load and adjust torque boost.

No	Fault Code	Fault Type	Possible Causes	Solutions
9	E.oL2	The AC drive overload	- The acceleration is too short; - Reset the rotating motor; - The voltage of power supply is too low; - The load is too heavy; - Close loop vector control, reverse direction of the code panel and long lowspeed operation.	- Increase the acceleration time; - Avoid restart after stopping; - Check the power of the supply line; - Select a AC drive with bigger power; - Select a proper motor.
10	E.SPo	Output phase loss	- U, V, W phase loss output (Or serious asymmetrical three-phase of the load).	- Check input power of supply line.
11	E.oH1	IGBT module overheat	- Ambient temperature is too high; - The time of overload running is too long.	- Lower ambient temperature
12	E.EF	External fault	- Sn external fault input terminals action	- Check input power of supply line
13	E.CE	485 communication fault	- The baud rate setting is incorrect; - Communication wire failure; - The communication address is wrong; - There is strong interference to the communication.	- Set proper baud rate; - Check the communication interface wiring; - Set the correct communication address - Replace or change the wiring, improve antiinterference capability.
14	E.lcE	Current detecting fault	- The connection of control board is not good; - Hoare components are broken; - The modifying circuit is abnormal.	- Check the connector and repatch; - Replace Hoare current sensor; - Replace the main control board.
15	E.EEP	EEPROM operation fault	- There is an error in readwrite control parameter; - EEPROM is damaged.	- Press STOP/RST to reset; - Replace the main control board
16	E.Pld	PID feedback disconnection fault	- PID feedback offline; - PID feedback source disappear.	- Check the PID feedback signal; - Check the PID feedback source.

No	Fault Code	Fault Type	Possible Causes	Solutions
17	E.BrE	Braking unit fault	- Braking circuit fault or damage to the brake pipes; External braking resistor is not sufficient.	Check the braking unit and replace the braking pipe; Increase the braking resistor.
18	E.End	Running time reached	- The actual running time is longer than the internal setting running time.	-Ask for the supplier and adjust the setting running time.

5.2 Common Faults and Solutions

You may come across the following faults during the use of the AC drive. Refer to the following table for simple fault analysis.

No	Fault	Possible Causes	Solutions
1	No display at power-on	- There is no power supply to the AC drive or the power Input to the AC drive is too low; - The power supply of the switch on the AC drive board is faulty; - The rectifier bridge is damaged; - Buffer resistance of the drive is damaged; - Control board and keypad are faulty; - The cable connecting the control board and the drive board and the operation panel breaks.	- Check the input supply; - Check the bus voltage; - Reconnect the driver board and the control board 26-core cable; - Contact the agent for technical support.
2	is displayed at power-on	- The cable between the driver board and the control board is not good; - Related components on the board are damaged.	- Re-connect the driver board and the control board 26core cable; - Contact the agent for technical support.

No	Fault	Possible Causes	Solutions
3	Power ON AC Drive displaynormal, after runningshow P.oFF and quickly extinguishOff, a few seconds later display show normal	- The cooling fan is damaged or locked-rotor occurs; - The peripheral control terminal cable is short circuited.	- Replace the damaged fan; - Eliminate external short circuited fault.
4	E. oH1 (module overheat) fault is reported frequently	- The setting of carrier frequency is too high; - The cooling fan is damaged, or the air filter is blocked; - Components inside the AC drive are damaged (thermal coupler or others).	- Reduce the carrier frequency (F00.15); - Replace the fan and clean the air filter; - Contact the agent or our company for technical support
5	The motor does not rotate after the AC drive runs	- Motor and motor cable are faulty; - Motor nameplate parameters are set improperly; - The cable between the drive board and the control board is in poor contact; - The drive board is faulty.	- Ensure the cable between the AC drive and the motor is normal; - Replace the motor or clear mechanical faults; - Check and re-set the motor nameplate parameters; - Check the cable between drive board and control panel; - Contact the agent or our company for technical support.
6	Input Sn terminals are invalid	- The parameters are set incorrectly; - The external signal is incorrect; - The control board is faulty.	- Reset the parameters in group F05; - Re-connect the external signal cables; - Contact the agent or our companyfor technical support.
7	The AC drive reports over-current and over-voltage frequently	- The motor nameplate parameters are set improperly; - The acceleration/deceleration time is improper; - The load fluctuates.	-Re-set the motor nameplate parameters; -Set proper acceleration / deceleration time; - Contact the agent or our company for technical support.

Chapter 6 Rs485 Communication Protocol

6.1 Function Protocol

Read data: Slave responding frame
1.Read a single or multiple data (0×03)

ADDR	xx
CMD	0×03
High bit of the start	xx
Low bit of the start	xx
High bit of data number	xx
Low bit of data number	xx
Check low bit of CRC	xx
Check high bit of CRC	xx

ADDR	xx
CMD	$0 x 03$
Byte number $\mathrm{N}^{*} 2$	$\mathrm{~N}^{*} 2$
High bit of data 1	xx
Low bit of data 1	xx
High bit of data N	xx
Low bit of data N	xx
Check low bit of CRC	xx
Check high bit of CRC	xx

2. Write a single data (0×06)

ADDR	xx
CMD	0×06
High bit of register Add.	xx
Low bit of register Add.	xx
High bit of write data	xx
Low bit of write data	xx
Check low bit of CRC	xx
Check high bit of CRC	xx

Write data response :

ADDR	$x x$
CMD	$0 x 06$
High bit of register Add.	$x x$
Low bit of register Add.	xx
High bit of write data	xx
Low bit of write data	xx
Check low bit of CRC	xx
Check high bit of CRC	xx

3. Host broadcast frequency and start-stop command(0X20)

Slave ADDR	xx
CMD	$0 x 20$
High bit of start-stop command	xx
Low bit of start-stop command	xx
High bit of setting frequency value	xx
Low bit of setting frequency value	xx
Low bit of CRC check	xx
High bit of CRC check	xx

Slave no response.

4 Error message response

Sometimes, errors occurs during the process of the communication. For example, reading or writing data to an illegal address, etc., then the slave will not work as a normal read-write response to reply the host, but send a wrong message frame. Error message frame format is as follows, where the command code is the result of the operation between highest-bit (Bit 7) of host operation and 1 (read error is 0×83 / write error is 0×86).

Slave Add	xx
CMD	0×83 or 0×86
Error code	xx
Low bit of CRC check	xx
High bit of CRC check	xx

Error codes are defined as follows:

Error Code	Error Name	Detailed Explanation of the Error
0×01	Illegal CMD	Slave received command code is illegal or not exist.
0×02	Illegal Add.	Slave receives operation address is cross-border or illegal.
0×03	Illegal Data	It is illegal that the salve receives data is not within the set range or the range is limited by other function.
0×04	Operation failed	Invalid for the function setting during the writing operation of the parameter, such as the function of the input terminals cannot be defined repeatedly.
0×05	Password Error	Written password is different from password set by the user.
0×06	Data frame error	Slave received data frame length is incorrect or CRC lhecksum can not be pass.
0×07	Parameters only for read	Slave received the function parameters of the write operation is a read-only parameter.
0×08	Parameters can not be modified during running	Slave receives the function parameter of write operation can not be modified during running.
0×09	Password protection	Slave has set a user password, but there is no password verification

6.2 Communication Parameter Address

MODBUS communication includes read and write operations of function parameters and some special register's read and write operations. Special register includes control register, set registers, state registers, and factory information.
(1) The Definition of Communication Parameter Address The function code number and parameter label is the representation rule of the parameter address.

High byte: F00-FOD Low byte:: 00-FF
For example, to access F04.13, the access address of the parameter is 0xF40D;

Function code group	Absolute address	Function code group	Absolute address
Group F00	0×00	Group F01	0×01
Group F02	0×02	Group F03	0×03
Group F04	0×04	Group F05	0×05
Group F06	0×06	Group F07	0×07
Group F08	0×08	Group F09	0×09
Group F0A	0×0 A	Group F0B	$0 \times 0 B$
Group F0C	$0 \times 0 \mathrm{C}$	Group F0D	$0 \times 0 \mathrm{D}$

Note: Due to EEPROM is stored frequently, it will reduce the life of the EEPROM, so some parameters don't need to store in the communication mode, as long as change the RAM value, the absolute address in the table corresponding to the parameter RAM address high post. To achieve this function, as long as the absolute address regard address high post

For example:

The parameter F04.13 is stored in EEPROM , and the address is represented as 0xF40D;

The parameter F04.13 is not stored in the EEPROM, and the address is represented as 0x040D;

Read of both EEPROM address and RAM address are valid.
When read the function code parameters, user can only read the maximum of 16 consecutive address parameters.more than 16 , the AC drive will return the illegal data.

When writing function parameter, each can only write a parameter. Users should pay attention to the setting value that cannot exceed the set range of function parameters.

Function parameters set permissions and function code attributes related parameters, such as read-only parameter is not writable, the operation cannot be changed in the running also cannot be written.

The password is set by the user, in the case without decryption, all of the parameters cannot write. User password and parameter autotune cannot via communication to write. Otherwise, the AC drive will return the fault information.

6.3 Special register address definitions

Register	Function	Add	Setup description	R/W
Control Register	Control Word register	2000H	0001H: Forward running 0002H: Reverse running 0003H: Forward jog 0004H: Reverse jog 0005H: Deceleration stop 0006H: Free stop (Emergency Stop) 0007H: Fault reset 0008H: Jog stop 0009H: Pre-excitation	W

Register	Function	Add	Setup description	R/W
Control Register	Control Bit register	2001H	$\begin{array}{ll} \text { Bit0:=0 invalid; } & =1 \text { Forward running } \\ \text { Bit1:=0 invalid; } & =1 \text { Reverse running } \\ \text { bit2:=0 invalid; } & =1 \text { Forward jog } \\ \text { Bit3: }=0 \text { invalid; } & =1 \text { Reverse jog } \\ \text { Bit4: }=0 \text { invalid; } & =1 \text { Deceleration stop } \\ \text { Bit5: }=0 \text { invalid; } & =1 \text { Free stop } \\ \text { Bit6:=0 invalid; } & =1 \text { Fault reset } \\ \text { Bit7:=0 invalid; } & =1 \text { Jog stop } \\ \text { Bit8 }=0 \text { Pre-excitation } \end{array}$	W
Setting Register	Setting frequency	3000 H	0~Fmax(unit : 0.01 Hz)	W
	PID reference	3001H	0~1000(1000 correspondence to100.0\%)	W
	PID feedback	3002 H	0~1000(1000 correspondence to100.0\%)	W
	Virtual input terminal	3009H	0x0000~0x00FF	W
	Virtual output terminal	300AH	0x0000~0x000F	W
	Analog output set	300 CH	$\begin{aligned} & \text { 1000~1000 } \\ & \text { (1000 correspondence to100.0\%) } \end{aligned}$	W
Status Register	Status register 1	6000 H	0001 H : Forward running 0002H: Reverse running 0003H: Inverter in stopping 0004H: Inverter in fault 0005H: Inverter in OFOF	R
	Status register 2	6001 H	```Bit0: =0 isn't ready to run; =1 ready to run Bi1~2: =00 motor1; =01 motor2 Bit3: =0 Asynchronous motor =1 Synchronous motor Bit4: =0: No overload pre-warning =1:overload pre-warning Bit5~Bit6: =00 keyboard control =01 terminal control =10 Communication control```	R
	Fault Code	6002H	See Fault Type Description	R

Note: R is only for read, write is invalid and will report fault; W is only for write, read is invalid and will report fault

